The minimal polynomial over Fq of linear recurring sequence over Fqm

نویسندگان

  • Zhi-Han Gao
  • Fang-Wei Fu
چکیده

Recently, motivated by the study of vectorized stream cipher systems, the joint linear complexity and joint minimal polynomial of multisequences have been investigated. Let S be a linear recurring sequence over finite field Fqm with minimal polynomial h(x) over Fqm. Since Fqm and F m q are isomorphic vector spaces over the finite field Fq, S is identified with an m-fold multisequence S over the finite field Fq. The joint minimal polynomial and joint linear complexity of the m-fold multisequence S(m) are the minimal polynomial and linear complexity over Fq of S respectively. In this paper, we study the minimal polynomial and linear complexity over Fq of a linear recurring sequence S over Fqm with minimal polynomial h(x) over Fqm. If the canonical factorization of h(x) in Fqm[x] is known, we determine the minimal polynomial and linear complexity over Fq of the linear recurring sequence S over Fqm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear complexity over Fq and over Fqm for linear recurring sequences

Article history: Received 7 August 2008 Revised 25 September 2008 Communicated by Gary L. Mullen

متن کامل

Fq-Linear Cyclic Codes over Fq: DFT Characterization

Codes over Fqm that form vector spaces over Fq are called Fq-linear codes over Fqm . Among these we consider only cyclic codes and call them Fq-linear cyclic codes (FqLC codes) over Fqm . This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). T...

متن کامل

Generating linear spans over finite fields by Wun - Seng Chou ( Taipei ) and Gary

(1) sk = { vk if k ≤ n , ∑n−1 i=0 aisk−n+i if k > n , consists of all nonzero elements of V for k = 1, . . . , p − 1. Such generating patterns are of interest because they provide simple algorithms for generating the linear span of independent subsets of vector spaces over Fp (see [1] for details). In this paper we generalize a number of the results from [1] by working over Fq where Fq is the f...

متن کامل

Values of linear recurring sequences of vectors over finite fields

(1) s(k) = { vk if k ≤ n , ∑n−1 i=0 ais(k − n+ i) if k > n . We note that the elements of the sequence S can be considered as elements of the field Fqn which is an n-dimensional vector space over Fq. It is easy to see that without loss of generality we can suppose that f(0) 6= 0. Thus, it is possible to define the order of f , denoted by τ , as the least positive integer t for which f(x) divide...

متن کامل

The minimal polynomial of sequence obtained from componentwise linear transformation of linear recurring sequence

Let S = (s1, s2, . . . , sm, . . .) be a linear recurring sequence with terms in GF (q) and T be a linear transformation of GF (q) over GF (q). Denote T (S) = (T (s1), T (s2), . . . , T (sm), . . .). In this paper, we first present counter examples to show the main result in [A.M. Youssef and G. Gong, On linear complexity of sequences over GF (2), Theoretical Computer Science, 352(2006), 288-29...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2009